
Tolar gRPC client API documentation

TOLAR GRPC CLIENT API DOCUMENTATION

Document change log

Document version Change author(s) Date Document changes

1.0 Iva Brajer 17/05/2019 Initial document

1.1 Iva Brajer 30/05/2019 Chapter 1.3. List addresses: fixed typo and changed
string to bytes for addresses
Added chapter 1.8. List balance per address
Added chapter 1.9. Send raw transaction

1.2 Iva Brajer 30/05/2019 Chapters 1.4. Verify Address, 1.5. Create new
address, 1.6. Export key file: fixed typo and changed
string to bytes

1.3 Iva Brajer 04/06/2019 Added response code descriptions for every API call
Added chapter 4.5. Get transaction list
Added confirmation_timestamp to chapters 4.2. Get
block, 4.3. Get transaction, 4.5. Get transaction list

1.4 Iva Brajer 06/06/2019 Added chapters 1.10. Change password and 1.11.
Change address password

1.5 Dario Pažin 31/07/2019 Chapter 1.9. Send raw transaction: change in
response parameter. API call now
returns [transaction_hash: bytes] instead of [result:
boolean]

1.6 Iva Brajer 28/08/2019 Chapter 4.3. Get transaction: updated response type
Chapter 4.5. Get transaction list: updated
Transaction details custom message type

1.7 Iva Brajer 06/09/2019 Chapter 1.8. List balance per address: balance type
change
Chapter 1.9. Send raw transaction: amount type
change
Chapter 2.3. Get balance: balance type change

1.8 Iva Brajer 25/09/2019 Chapter 1.9. Send raw transaction: added missing
additional fields with extended example
Chapter 2.1. Send transaction: updated request
custom messages
Chapter 2.2. List unspent outputs removed
Chapter 2.2. Get nonce added instead

1.9. Dario Pažin 14/10/2019 Added chapters:
1.12. Send fund transfer transaction added
1.13. Send deploy contract transaction
1.14. Send execute function transaction
2.4. Try call transaction

Chapter 4.3. Get transaction updated response
parameters
Chapter 4.5. Get transaction list updated response
parameters

1.10. Igor Jerkovi 08/11/2019 Chapter 4.2. Get block is now renamed to Get block
by hash
Added chapters:

4.3. Get block by index

1.11. Dario Pažin 22/11/2019 Added chapters:
5.1. Get block info by hash
5.2. Get block info by index
5.3. Get latest blocks
5.4. Get transaction
5.5. Get address

1.12. Dario Pažin 28/11/2019 Chapter 2.1. Send signed transaction: change in
response parameter. API call now
returns [transaction_hash: bytes] instead of [result:
boolean]

1.13. Igor Jerkovi 02/12/2019 Removed chapters:
2.2. Get nonce
2.3. Get balance
2.4. Try call transaction

Added chapters
4.7. Get nonce
4.8. Get balance
4.9. Get latest balance
4.10. Try call transaction

1.14. Dario Pažin 30/01/2020 Removed chapters
5.1. Get block information by hash
5.2. Get block information by index
5.3. Get latest blocks
5.4. Get transaction by hash
5.5. Get address information

1.15. Igor Jerkovi 27/03/2020 Added chapters
4.11. Get transaction receipt
4.12. Get gas estimate

1.16. Dario Pažin 31/03/2020 Chapter 4.10. Try call transaction:
Added excepted field in response
Added thin node only mark for requests that are
supported only on thin node

1.12. Send fund transfer transaction
1.13. Send deploy contract transaction
1.14. Send execute function transaction
4.10. Try call transaction
4.11. Get transaction receipt
4.12. Get gas estimate

1.17. Dario Pažin 27/04/2020 Refactoring typos, parameter types and
missing parameters in several examples

1.18. Dario Pažin 17/06/2020 Added chapters
4.13. Get latest block

1.19. Dario Pažin 31/07/2020 Data and output parameters used in transaction related
requests are now bytes instead of string type

1.9. Send raw transaction
1.13. Send deploy contract transaction
1.14. Send execute function transaction
2.1. Send signed transaction
4.4. Get transaction
4.6. Get transaction list
4.10. Try call transaction
4.12. Get gas estimate

1.20. Dario Pažin 31/07/2020 Added field transaction hash in Get transaction and Get
transaction list responses

4.4. Get transaction
4.6. Get transaction list

1.21. Igor Jerkovi 27/08/2020 Added chapters
1.15. Import raw private key

1.22. Dario Pažin 31/05/2022 Added network id in transaction requests and responses

1.9. Send raw transaction
1.12. Send fund transfer transaction
1.13. Send deploy contract transaction
1.14. Send execute function transaction
2.1. Send signed transaction
4.4. Get transaction
4.6. Get transaction list
4.10. Try call transaction
4.12. Get gas estimate

1.23. Dario Pažin 07/06/2022 Added chapter

4.14. Get past events

Introduction

This document guides through gRPC client APIs available by Tolar HashNet master or thin node. APIs can roughly be separated into several
categories:

1.
2.

account management (e.g. create a new address, list existing addresses)
transactions (e.g. send a new transaction)
network information (e.g. get peer count, check if master node)
block explorer (e.g. get confirmed transaction, get confirmed block, get a balance for address)

APIs are available on two separate endpoints (different local ports):

Client endpoint: transactions + block explorer + network information
Account endpoint: account management

Endpoints are defined in master or thin node configuration files.

gRPC protocol buffer schemes

In order to be able to use gRPC client APIs, as a first step protobuf schemes should be provided by Tolar HashNet team. With provided
schemes, it’s possible to run protocol buffer compiler (protoc tool) for the desired language. Generated classes could be used to send request
messages and process response messages from Tolar HashNet APIs.

Tolar address format

Tolar address is formatted in the following way:

Capital letter T (1 byte) – unique address space (20 bytes) – checksum part (4 bytes)

Description of possible API responses

Code Number Description Closest HTTP Mapping

OK 0 Not an error; returned on success. 200 OK

CANCELLED 1 The operation was canceled, typically by the caller. 499 Client Closed
Request

UNKNOWN 2 Unknown error. For example, this error may be returned when a Status
value received from another address space belongs to an error space
that is not known in this address space. Also, errors raised by APIs that
do not return enough error information may be converted to this error.

500 Internal Server Error

INVALID_ARGUMENT 3 The client specified an invalid argument. Note that this differs from FAIL
. indicates arguments that are ED_PRECONDITION INVALID_ARGUMENT

problematic regardless of the state of the system (e.g., a malformed file
name).

400 Bad Request

DEADLINE_EXCEEDED 4 The deadline expired before the operation could complete. For
operations that change the state of the system, this error may be
returned even if the operation has completed successfully. For example,
a successful response from a server could have been delayed long

504 Gateway Timeout

NOT_FOUND 5 Some requested entity (e.g., file or directory) was not found. Note to
server developers: if a request is denied for an entire class of users,
such as gradual feature rollout or undocumented whitelist, NOT_FOUND
may be used. If a request is denied for some users within a class of
users, such as user-based access control, must PERMISSION_DENIED
be used.

404 Not Found

ALREADY_EXISTS 6 The entity that a client attempted to create (e.g., file or directory) already
exists.

409 Conflict

PERMISSION_DENIED 7 The caller does not have permission to execute the specified operation.
 must not be used for rejections caused by PERMISSION_DENIED

exhausting some resource (use instead for RESOURCE_EXHAUSTED
those errors). must not be used if the caller can PERMISSION_DENIED
not be identified (use instead for those errors). This UNAUTHENTICATED
error code does not imply the request is valid or the requested entity
exists or satisfies other pre-conditions.

403 Forbidden

UNAUTHENTICATED 16 The request does not have valid authentication credentials for the
operation.

401 Unauthorized

RESOURCE_EXHAUSTED 8 Some resource has been exhausted, perhaps a per-user quota, or
perhaps the entire file system is out of space.

429 Too Many Requests

FAILED_PRECONDITION 9 The operation was rejected because the system is not in a state
required for the operation's execution. For example, the directory to be
deleted is non-empty, an rmdir operation is applied to a non-directory,
etc. Service implementors can use the following guidelines to decide
between , , and : (a) FAILED_PRECONDITION ABORTED UNAVAILABLE
Use if the client can retry just the failing call. (b) Use UNAVAILABLE ABO

 if the client should retry at a higher level (e.g., when a client-RTED
specified test-and-set fails, indicating the client should restart a read-
modify-write sequence). (c) Use if the client FAILED_PRECONDITION
should not retry until the system state has been explicitly fixed. E.g., if
an "rmdir" fails because the directory is non-empty, FAILED_PRECONDI

 should be returned since the client should not retry unless the files TION
are deleted from the directory.

400 Bad Request

ABORTED 10 The operation was aborted, typically due to a concurrency issue such as
a sequencer check failure or transaction abort. See the guidelines above
for deciding between , , and FAILED_PRECONDITION ABORTED UNAVAIL

.ABLE

409 Conflict

OUT_OF_RANGE 11 The operation was attempted past the valid range. E.g., seeking or
reading past end-of-file. Unlike , this error INVALID_ARGUMENT
indicates a problem that may be fixed if the system state changes. For
example, a 32-bit file system will generate if INVALID_ARGUMENT
asked to read at an offset that is not in the range [0,2^32-1], but it will
generate if asked to read from an offset past the OUT_OF_RANGE
current file size. There is a fair bit of overlap between FAILED_PRECOND

 and . We recommend using ITION OUT_OF_RANGE OUT_OF_RANGE
(the more specific error) when it applies so that callers who are iterating
through a space can easily look for an error to detect OUT_OF_RANGE
when they are done.

400 Bad Request

UNIMPLEMENTED 12 The operation is not implemented or is not supported/enabled in this
service.

501 Not Implemented

INTERNAL 13 Internal errors. This means that some invariants expected by the
underlying system have been broken. This error code is reserved for
serious errors.

500 Internal Server Error

UNAVAILABLE 14 The service is currently unavailable. This is most likely a transient
condition, which can be corrected by retrying with a backoff. Note that it
is not always safe to retry non-idempotent operations.

503 Service Unavailable

DATA_LOSS 15 Unrecoverable data loss or corruption. 500 Internal Server Error

1. Account management APIs

1.1. Create

Endpoint Account

Method name Create

Method description Creates new keystore attached to master or thin node

Request parameters [master_password: string]

Locks entire keystore with this password if provided
If empty, keystore will not be locked

Response parameters [result: boolean]

True if keystore was successfully created, false otherwise

Response code descriptions OK – request successful
ALREADY_EXISTS – keystore already created or open
NOT_FOUND – keystore does not exist

Faulty scenarios Not able to create another keystore if there is already an existing one

Example Request protobuf message:

{

“master_password”: “VerySafePassword”

}

Response protobuf message:

{

“result”: true

}

1.2. Open

Endpoint Account

Method name Open

Method description Opens existing keystore attached to master or thin node

Request parameters [master_password: string]

Unlocks keystore with this password if keystore was originally locked with the provided
password

Response code descriptions OK – request successful
ALREADY_EXISTS – keystore already open
NOT_FOUND – keystore does not exist
PERMISSION_DENIED – invalid password to unlock keystore

Response parameters [result: boolean]

True if keystore was successfully opened, false otherwise

Faulty scenarios Not able to open keystore if not previously created or if the wrong master password was
provided

Example Request protobuf message:

{

“master_password”: “VerySafePassword”

}

Response protobuf message:

{

“result”: true

}

1.3. List addresses

Endpoint Account

Method name ListAddresses

Method description List all addresses in keystore attached to master or thin node

Request parameters None

Response parameters [addresses: bytes array]

Array of addresses in Tolar address format

Response code descriptions OK – request successful
PERMISSION_DENIED – not able to access keystore

Faulty scenarios Keystore not found or not previously opened/unlocked

Example Request protobuf message:

{

}

Response protobuf message:

{

“addresses”: [“54948c78114bc39675157e097830ae63c0da7857a19c13aec7”,
“54949f54114bc39675157e123830ae7a70da7adfa19c24c8db”]

}

1.4. Verify address

Endpoint Account

Method name VerifyAddress

Method description Verifies if provided address string is in valid Tolar address format

Request parameters [address: bytes]

Address in hex string format

Response parameters [result: boolean]

True if provided address is in valid Tolar address format, false otherwise

Response code descriptions OK – request successful

Faulty scenarios Keystore not found or not previously opened/unlocked

Example Request protobuf message:

{

“address”: “abcdef123456”

}

Response protobuf message:

{

“result”: “false”

}

1.5. Create new address

Endpoint Account

Method name CreateNewAddress

Method description Creates new address in keystore attached to master or light node

Request parameters [name: string]

Optional address description name

[lock_password: string]

Optional password to protect generate keypair for newly created address

[lock_hint: string]

Optional password hint for the selected password

Response parameters [address: bytes]

If successfully created, return newly created address in Tolar address format

Response code descriptions OK – request successful
PERMISSION_DENIED – not able to access keystore

Faulty scenarios Keystore not found or not previously opened/unlocked

Example Request protobuf message:

{

“name”: “NewAddress”,

“lock_password”: “pass123”

}

Response protobuf message:

{

“address”: “ 54948c78114bc39675157e097830ae63c0da7857a19c13aec7”

}

1.6. Export key file

Endpoint Account

Method name ExportKeyFile

Method description Exports key file for selected address from keystore attached to master or thin node

Request parameters [address: bytes]

Selected address for which export keypair information is required

Response parameters [json_key_file: string]

If successful, return key file in encrypted JSON format

Response code descriptions OK – request successful
PERMISSION_DENIED – not able to access keystore

Faulty scenarios Keystore not found or not previously opened/unlocked
The address does not exist in keystore

Example Request protobuf message:

{

“address”: “54f9f02416d894487e7bbd9d74065f7996cbdbf52bab547642”

}

Response protobuf message:

{

“json_key_file”: “{

"address" : "f9f02416d894487e7bbd9d74065f7996cbdbf52b",

"crypto" : {

"cipher" : "aes-128-ctr",

"cipherparams" : {"iv" : "28fe2f484412dcdc1e2c56544e511d1c"},

"ciphertext" :

"db10f6e015eb7d744a8de7a2ab2a97f4542c60cb48b846d441ae4add00b8a469",

"kdf" : "scrypt",

"kdfparams" : {

"dklen" : 32,

"n" : 262144,

"p" : 1,

"r" : 8,

"salt" :

"68caf683e20ae150d7f2150c25426caf178c2f2ee9082cfa784239838ae64b68"

},

"mac" : "86006944babe7d7d80c08c29cd3defc7aebe1fd9bdc9d3aee2cb8f6382982d6e"

},

"id" : "32addc9f-8942-93e9-f109-f6fa8776fdf1",

"version" : 3

}”

}

1.7. Import key file

Endpoint Account

Method name ImportKeyFile

Method description Imports key file to keystore attached to master or light node

Request parameters [json_key_file: string]

Key file in encrypted JSON format

[name: string]

Optional name for imported address

[lock_password: string]

Provide lock password if original key file was password protected

[lock_hint: string]

Optional lock hint for lock password

Response parameters [result: boolean]

Returns true if import successful, false otherwise

Response code descriptions OK – request successful
PERMISSION_DENIED – not able to access keystore

Faulty scenarios Keystore not found or not previously opened/unlocked
Key file can’t be unlocked with provided password

Example Request protobuf message:

{

“json_key_file”: “{

"address" : "f9f02416d894487e7bbd9d74065f7996cbdbf52b",

"crypto" : {

"cipher" : "aes-128-ctr",

"cipherparams" : {"iv" : "28fe2f484412dcdc1e2c56544e511d1c"},

"ciphertext" :

"db10f6e015eb7d744a8de7a2ab2a97f4542c60cb48b846d441ae4add00b8a469",

"kdf" : "scrypt",

"kdfparams" : {

"dklen" : 32,

"n" : 262144,

"p" : 1,

"r" : 8,

"salt" :

"68caf683e20ae150d7f2150c25426caf178c2f2ee9082cfa784239838ae64b68"

},

"mac" : "86006944babe7d7d80c08c29cd3defc7aebe1fd9bdc9d3aee2cb8f6382982d6e"

},

"id" : "32addc9f-8942-93e9-f109-f6fa8776fdf1",

"version" : 3

}”

}

Response protobuf message:

{

“result”: “true”

}

1.8. List balance per address

Endpoint Account

Method name ListBalancePerAddress

Method description List all addresses (stored in keystore attached to master or thin node) with their associated name
and current balance status

Request parameters None

Response parameters [addresses: AddressBalance array]

Array of addresses paired with their name and balance

Response code descriptions OK – request successful
PERMISSION_DENIED – not able to access keystore

Custom messages [AddressBalance]

- [address: bytes]

Tolar address

- [balance: bytes]

Current balance for that address (in tolars)

- [address_name: string]

Associated address name (if exists)

Faulty scenarios Keystore not found or not previously opened/unlocked

Example Request protobuf message:

{

}

Response protobuf message:

{

“addresses”: [{

“address“: “54948c78114bc39675157e097830ae63c0da7857a19c13aec7”,

“name”: “”,

“balance”: 1570},

{“address”: “54949f54114bc39675157e123830ae7a70da7adfa19c24c8db”,

“name”: “CustomAddress”,

“balance”: 124]}

]

1.9. Send raw transaction

Endpoint Account

Method name SendRawTransaction

Method description Creates transaction from data given in request parameters. Verify and sign the transaction using
keystore and then sends the transaction to the master node where it will be executed.

Request parameters [sender_address: bytes]

Sender address in Tolar format

[receiver_address: bytes]

Receiver address in Tolar format

[amount: bytes]

Amount of tolars to send

[sender_address_password: string]

The password to unlock private key for sender address on node keystore (leave empty for no
password)

[gas: bytes]

Maximum gas (gas limit) that will be spent to send this transaction (gas used for transaction
sending or computational work in case of smart contracts)

[gas_price: bytes]

Amount of gas to pay for each unit of gas, greater gas price is related to faster time to execute the
transaction (transaction fee = gas * gas price)

[data: bytes]

Smart contract bytecode. Not in hex format, transform hex bytecode to bytes.

[nonce: bytes]

Unique transaction index for this sender address (auto-incremented value, each transaction has
unique nonce)

[network_id: uint64]

Network id numbers differ depending on the environment. Mainnet is 1, testnet 2.

Response parameters [transaction_hash: bytes]

Transaction hash

Response code descriptions OK – request successful
PERMISSION_DENIED – not able to access keystore
INVALID_ARGUMENT – something wrong with request parameter(s)
ABORTED – keystore not able to sign a transaction

Faulty scenarios Keystore not found or not previously opened/unlocked
The sender address is not found in node keystore
Password for sender address is not correct and private key can’t be accessed
Sender address balance is not enough to send the requested amount of tolars

Example Request protobuf message:

{

“sender_address”: “ 54948c78114bc39675157e097830ae63c0da7857a19c13aec7”,

“receiver_address”:” 54949f54114bc39675157e123830ae7a70da7adfa19c24c8db”,

“amount”: 100,

“sender_address_password”: “pass123”,

"gas": 21000,

"gas_price": 1,

"data": "",

"nonce": 0,

"network_id": 1

}

Response protobuf message:

{

“transaction_hash”: “c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”

}

1.10. Change password

Endpoint Account

Method name ChangePassword

Method description Changes master password used to lock entire keystore

Request parameters [old_master_password: string]

The current master password used to lock keystore

[new_master_password: string]

The new master password that will replace the current one

Response parameters [result: bool]

True if password change was successful, false otherwise

Response code descriptions OK – request successful
PERMISSION_DENIED – provided old master password was not able to unlock
keystore
NOT_FOUND – keystore does not exist

Faulty scenarios Keystore not found or not previously opened/unlocked
Provided old master password is invalid

Example Request protobuf message:

{

“old_master_password”: “ old”,

“new_master_password”:” new”

}

Response protobuf message:

{

“result”: “true”

}

1.11. Change address password

Endpoint Account

Method name ChangeAddressPassword

Method description Changes lock password for the single address used to lock its private key in keystore

Request parameters [address: bytes]

Address for which password changing is required

[old_password: string]

Current address password

[new_password: string]

New address password that will replace the current one

Response parameters [result: bool]

True if password change was successful, false otherwise

Response code descriptions OK – request successful
PERMISSION_DENIED – provided old password was not able to unlock address private
key in keystore
NOT_FOUND – keystore does not exist

Faulty scenarios Keystore not found or not previously opened/unlocked
Provided old password is invalid
The address doesn't exist in keystore

Example Request protobuf message:

{

“address”: “54949f54114bc39675157e123830ae7a70da7adfa19c24c8db”,

“old_master_password”: “ old”,

“new_master_password”:” new”

}

Response protobuf message:

{

“result”: “true”

}

1.12. Send fund transfer transaction [Thin node only]

Endpoint Account

Method name SendFundTransferTransaction

Method
description

Sends data for creating a transaction on a thin node only if sender address private key is stored in node keystore
The transaction used for transferring funds from the sender to the receiver address.

[sender_address: bytes]

Sender address in Tolar format

[receiver_address: bytes]

Receiver address in Tolar format

[amount: bytes]

Amount of tolars to send

[sender_address_password: string]

The password to unlock private key for sender address on node keystore (leave empty for no password)

[gas: bytes]

Maximum gas (gas limit) that will be spent to send this transaction (gas used for transaction sending or computational
work in case of smart contracts)

[gas_price: bytes]

Amount of gas to pay for each unit of gas, greater gas price is related to faster time to execute the transaction
(transaction fee = gas * gas price)

[nonce: bytes]

Unique transaction index for this sender address (auto-incremented value, each transaction has unique nonce)

[network_id: uint64]

Network id numbers differ depending on the environment. Mainnet is 1, testnet 2.

Response
parameters

[transaction_hash: bytes]

Transaction hash

Response code
descriptions

OK – request successful
PERMISSION_DENIED – not able to access keystore
INVALID_ARGUMENT – something wrong with request parameter(s)
ABORTED – keystore not able to sign transaction

Faulty scenarios Keystore not found or not previously opened/unlocked
The sender address is not found in node keystore
Password for sender address is not correct and private key can’t be accessed
Sender address balance is not enough to send a requested amount of tolars

Example Request protobuf message:

{

“sender_address”: “ 54948c78114bc39675157e097830ae63c0da7857a19c13aec7”,

“receiver_address”:” 54949f54114bc39675157e123830ae7a70da7adfa19c24c8db”,

“amount”: 100,

“sender_address_password”: “pass123”,

"gas": 21000,

"gas_price": 1,

"nonce": 0,

"network_id": 1

}

Response protobuf message:

{

“transaction_hash”: “c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”

}

1.13. Send deploy contract transaction [Thin node only]

Endpoint Account

Method name SendDeployContractTransaction

Method
description

Sends data for creating a transaction on thin node only if sender address private key is stored in node keystore
The transaction used for deploying the contract.

Request
parameters

[sender_address: bytes]

Sender address in Tolar format

[amount: bytes]

Amount of tolars (can be required by contract constructor)

[sender_address_password: string]

The password to unlock private key for sender address on node keystore (leave empty for no password)

[gas: bytes]

Maximum gas (gas limit) that will be spent to send this transaction (gas used for transaction sending or computational
work in case of smart contracts)

[gas_price: bytes]

Amount of gas to pay for each unit of gas, greater gas price is related to faster time to execute the transaction (transaction
fee = gas * gas price)

[data: bytes]

Smart contract bytecode. Not in hex format, transform hex bytecode to bytes.

[nonce: bytes]

Unique transaction index for this sender address (auto-incremented value, each transaction has unique nonce)

[network_id: uint64]

Network id numbers differ depending on the environment. Mainnet is 1, testnet 2.

Response
parameters

[transaction_hash: bytes]

Transaction hash

Response code
descriptions

OK – request successful
PERMISSION_DENIED – not able to access keystore
INVALID_ARGUMENT – something wrong with request parameter(s)
ABORTED – keystore not able to sign a transaction

Faulty scenarios Keystore not found or not previously opened/unlocked
Sender address is not found in node keystore

Not enough gas to deploy contract
Sender address balance is not enough to send requested amount of tolars

Example Request protobuf message:

{

“sender_address”: “ 54948c78114bc39675157e097830ae63c0da7857a19c13aec7”,

“amount”: 0,

“sender_address_password”: “pass123”,

"gas": 200000,

"gas_price": 1,

"data": "6080604052341561000f57600080fd5b60b98061001d6000396000f300"
"608060405260043610603f576000357c01000000000000000000000000"
"00000000000000000000000000000000900463ffffffff168063b3de64"
"8b146044575b600080fd5b3415604e57600080fd5b606a600480360381"
"019080803590602001909291905050506080565b604051808281526020"
"0191505060405180910390f35b60006007820290509190505600a16562"
"7a7a72305820f294e834212334e2978c6dd090355312a3f0f9476b8eb9"
"8fb480406fc2728a960029",

"nonce": 0,

"network_id": 1

}

Response protobuf message:

{

“transaction_hash”: “c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”

}

1.14. Send execute function transaction [Thin node only]

Endpoint Account

Method name SendExecuteFunctionTransaction

Method
description

Sends data for creating a transaction on thin node only if sender address private key is stored in node keystore
The transaction is used for executing contract functions

Request
parameters

[sender_address: bytes]

Sender address in Tolar format

[receiver_address: bytes]

Contract address in Tolar format

[amount: bytes]

Amount of tolars if needed in contract function

[sender_address_password: string]

The password to unlock private key for sender address on node keystore (leave empty for no password)

[gas: bytes]

Maximum gas (gas limit) that will be spent to send this transaction (gas used for transaction sending or computational
work in case of smart contracts)

[gas_price: bytes]

Amount of gas to pay for each unit of gas, greater gas price is related to faster time to execute the transaction (transaction
fee = gas * gas price)

[data: bytes]

Smart contract bytecode. Not in hex format, transform hex bytecode to bytes.

[nonce: bytes]

Unique transaction index for this sender address (auto-incremented value, each transaction has unique nonce)

[network_id: uint64]

Network id numbers differ depending on the environment. Mainnet is 1, testnet 2.

Response
parameters

[transaction_hash: bytes]

Transaction hash

Response code
descriptions

OK – request successful
PERMISSION_DENIED – not able to access keystore
INVALID_ARGUMENT – something wrong with request parameter(s)
ABORTED – keystore not able to sign a transaction

Faulty scenarios Keystore not found or not previously opened/unlocked
Sender address is not found in node keystore

Not enough gas to execute contract function
Sender address balance is not enough to send requested amount of tolars

Example Request protobuf message:

{

“sender_address”: “ 54948c78114bc39675157e097830ae63c0da7857a19c13aec7”,

“receiver_address”:” 54949f54114bc39675157e123830ae7a70da7adfa19c24c8db”,

“amount”: 100,

“sender_address_password”: “pass123”,

"gas": 210000,

"gas_price": 1,

"data": "b3de648b0001",

"nonce": 0,

"network_id": 1

}

Response protobuf message:

{

“transaction_hash”: “c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”

}

1.15. Import raw private key [Thin node only]

Endpoint Account

Method name ImportRawPrivateKey

Method description Imports raw private key to keystore attached to thin node

Request parameters [raw_private_key: string]

Raw private key, should be 64 chars long

[name: string]

Optional name for imported address

[lock_password: string]

Provide lock password if you want to encrypt the imported private key

[lock_hint: string]

Optional lock hint for lock password

Response parameters [result: boolean]

Returns true if import successful, false otherwise

Response code descriptions OK – request successful
PERMISSION_DENIED – not able to access keystore/wrong priv key size

Faulty scenarios Keystore not found or not previously opened/unlocked
Incorrect private key length

Example Request protobuf message:

{

“raw_private_key”: “59186b6c7363dce5cf4fb46f8fb3668d5dabb038c126d80ade61523491a86334
",

"name": "imported_address_name",

"lock_password": "pass",

"lock_hint": "hint"

}

Response protobuf message:

{

“result”: “true”

}

2. Transaction APIs

2.1. Send signed transaction

Endpoint Client

Method name SendSignedTransaction

Method description Send signed transaction with prepared transaction inputs and outputs

Request parameters [transaction: SignedTransaction]

Signed Transaction message with signed Input messages and raw Output messages, client keypair should be
used for signing

Response code
descriptions

OK – request successful
INVALID_ARGUMENT – something wrong with request parameter(s)
INTERNAL – failed to process a transaction

Custom messages [SignedTransaction]

- [Transaction]

[sender_address: bytes]

Sender address in Tolar format

[receiver_address: bytes]

Receiver address in Tolar format

[value: bytes]

Amount of tolars to send

[gas: bytes]

Maximum gas (gas limit) that will be spent to send this transaction (gas used for transaction sending or
computational work in case of smart contracts)

[gas_price: bytes]

Amount of gas to pay for each unit of gas, greater gas price is related to faster time to execute the
transaction (transaction fee = gas * gas price)

[data: bytes]

Smart contract bytecode. Not in hex format, transform hex bytecode to bytes.

[nonce: bytes]

Unique transaction index for this sender address (auto-incremented value, each transaction has unique
nonce)

[network_id: uint64]

Network id numbers differ depending on the environment. Mainnet is 1, testnet 2.

- [SignatureData]

[hash: bytes]

Transaction hash

[signature: bytes]

Signature

[signer_id: bytes]

Signer identification

Response parameters [transaction_hash: bytes]

Transaction hash

Faulty scenarios Not able to verify the signature of the transaction
Something wrong with request parameter(s)

Example Request protobuf message (see chapter 1.9. SendRawTransaction for specific fields examples):

{

“transaction”: <signed_bytes>

}

Response protobuf message:

{

“transaction_hash”: “c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”

}

3. Network information APIs

3.1. Peer count

Endpoint Client

Method name PeerCount

Method description Get current peer count in running HashNet network

Request parameters None

Response parameters [count: uint64]

Number of discovered peers in HashNet network

Response code descriptions OK – request successful
INTERNAL – failed to process call

Faulty scenarios Peer to peer discovery failure

Example Request protobuf message:

{

}

Response protobuf message:

{

“count”: 4

}

3.2. Master node count

Endpoint Client

Method name MasterNodeCount

Method description Get current master nodes count in running HashNet network

Request parameters None

Response parameters [count: uint64]

Number of master nodes in HashNet network

Response code descriptions OK – request successful
INTERNAL – failed to process call

Faulty scenarios Peer to peer discovery failure

Example Request protobuf message:

{

}

Response protobuf message:

{

“count”: 4

}

3.3. Is master node

Endpoint Client

Method name IsMasterNode

Method description Check if currently pinging master node endpoint in running HashNet network

Request parameters None

Response parameters [is_master: bool]

Returning true if the node is a master node, false otherwise

Response code descriptions OK – request successful
INTERNAL – failed to process call

Faulty scenarios Peer to peer discovery failure

Example Request protobuf message:

{

}

Response protobuf message:

{

“is_master”: true

}

3.4. Maximum peer count

Endpoint Client

Method name MaxPeerCount

Method description Get maximum allowed peer count in the running HashNet network

Request parameters None

Response parameters [count: uint64]

Returns maximum allowed peer count

Response code descriptions OK – request successful
INTERNAL – failed to process call

Faulty scenarios Peer to peer discovery failure

Example Request protobuf message:

{

}

Response protobuf message:

{

“count”: 42

}

4. Block explorer APIs

4.1. Get block count

Endpoint Client

Method name GetBlockCount

Method description Gets number of confirmed blocks in the current node blockchain

Request parameters None

Response parameters [block_count: uint64]

Number of available confirmed blocks in the blockchain

Response code descriptions OK – request successful

Faulty scenarios No confirmed blocks due to node malfunction or gossip protocol failure

Example Request protobuf message:

{

}

Response protobuf message:

{

“block_count”: 148

}

4.2. Get block by hash

Endpoint Client

Method name GetBlockByHash

Method description Retrieves confirmed block information from the blockchain

Request parameters [block_hash: bytes]

The hash for the requested block

Response parameters [block_index: uint64]

Block index in current blockchain

[block_hash: bytes]

Block hash

[previous_block_hash: bytes]

Block hash for the previous block in blockchain attached to this block

[transaction_hashes: bytes array]

An array of transaction hashes contained in this block

[confirmation_timestamp: uint64]

The time when the block was confirmed in UNIX timestamp format

Response code descriptions OK – request successful
NOT_FOUND – block is not found

Faulty scenarios Block hash doesn’t exist in blockchain

Block is not yet confirmed in the blockchain

Example Request protobuf message:

{

“block_hash”: “ c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”

}

Response protobuf message:

{

“block_index”: 9647,

“block_hash”:

“c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”,

“previous_block_hash”:
“392c3138b6931a649b5b293ae2129ac0671b91905ebb39694fbe1c4f0ed9f28d”,

“transaction_hashes”: [“f58ffec7eb33908a32aa4c0c1ec4b30abc2dd9f0dc4da390f46f6b56762fdf24”,

“0e5669f90fdf46baef98b629efc1e7b461b4f092600a07a5449b963a3865483e”,

“23795ebb10fc32524e2280734087fe99fe8d5f28db360bbf635a6abe44c872da”],

“confirmation_timestamp”: 1559653728

}

4.3. Get block by index

Endpoint Client

Method name GetBlockByIndex

Method description Retrieves confirmed block information from the blockchain

Request parameters [block_index: uint64]

Block index for the requested block

Response parameters [block_index: uint64]

Block index in current blockchain

[block_hash: bytes]

Block hash

[previous_block_hash: bytes]

Block hash for the previous block in blockchain attached to this block

[transaction_hashes: bytes array]

An array of transaction hashes contained in this block

[confirmation_timestamp: uint64]

The time when the block was confirmed in UNIX timestamp format

Response code descriptions OK – request successful
NOT_FOUND – block is not found

Faulty scenarios Block index larger than last confirmed block index exist in blockchain

Example Request protobuf message:

{

“block_index”: 9467

}

Response protobuf message:

{

“block_index”: 9647,

“block_hash”:

“c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”,

“previous_block_hash”:
“392c3138b6931a649b5b293ae2129ac0671b91905ebb39694fbe1c4f0ed9f28d”,

“transaction_hashes”: [“f58ffec7eb33908a32aa4c0c1ec4b30abc2dd9f0dc4da390f46f6b56762fdf24”,

“0e5669f90fdf46baef98b629efc1e7b461b4f092600a07a5449b963a3865483e”,

“23795ebb10fc32524e2280734087fe99fe8d5f28db360bbf635a6abe44c872da”],

“confirmation_timestamp”: 1559653728

}

4.4. Get transaction

Endpoint Client

Method name GetTransaction

Method description Retrieves confirmed transaction information from the current node blockchain

Request parameters [transaction_hash: bytes]

The hash for the requested transaction

Response parameters [transaction_hash: bytes]

Transaction hash

[block_hash: bytes]

Block hash of confirmed block where this transaction is found

[transaction_index: uint64]

Index of transaction inside a block

[sender_address: bytes]

The address that initiated this transaction

[receiver_address: bytes]

The address that received this transaction

[value: bytes]

Amount sent in the transaction

[gas: bytes]

Maximum gas (gas limit) to spend to send this transaction (gas used for transaction sending or
computational work in case of smart contracts)

[gas_price: bytes]

Amount of gas to pay for each unit of gas, greater gas price is related to faster time to execute
the transaction (transaction fee = gas * gas price)

[data: bytes]

Smart contract bytecode. Not in hex format, transform hex bytecode to bytes.

[nonce: bytes]

Unique transaction index for this sender address (auto-incremented value, each transaction has
unique nonce)

[gas_used: bytes]

The gas amount used executing transaction

[gas_refunded: bytes]

The amount that is refunded in special cases

[new_address: bytes]

New address that is created after executing transaction (deployed contract address)

[output: bytes]

The returned data of the call, e.g. a smart contract functions return value

[excepted: bool]

true if an exception happened, false if transaction execution was successful

[confirmation_timestamp: uint64]

The time when the transaction was confirmed in UNIX timestamp format

[network_id: uint64]

Network id numbers differ depending on the environment. Mainnet is 1, testnet 2.

Response code descriptions OK – request successful
NOT_FOUND – the transaction is not found

Faulty scenarios Transaction doesn’t exist in any confirmed block

Example Request protobuf message:

{

“transaction_hash”: “
c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”

}

Response protobuf message:

{

“transaction_hash”: “
c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”

“block_hash”: “ ae78000220d4a1a6d2b3ca9b14174505d9e4b081e06e1a5f2e79052a2f6e26b8”,

“transaction_index”: 1

“sender_address”: “54f9f02416d894487e7bbd9d74065f7996cbdbf52bab547642”,

“receiver_address": “54949f54114bc39675157e123830ae7a70da7adfa19c24c8db”,

"value": 156,

"gas": 21000,

"gas_price": 1,

"gas_used": 21730,

"gas_refunded": 0,

"data": "b3de648b0001",

"nonce": "1",

"new_address": ""

"output": "0009"

"excepted": false

“confirmation_timestamp”: 1559653728,

"network_id": 1

}

4.5. Get blockchain information

Endpoint Client

Method name GetBlockchainInfo

Method description Retrieves blockchain statistics information

Request parameters None

Response parameters [confirmed_blocks_count: uint64]

Total number of confirmed blocks in the blockchain

[total_block_count: uint64]

Total number of blocks in the current blockchain (confirmed + pending)

[last_confimed_block_hash: bytes]

Hash of latest confirmed block in current blockchain

Response code descriptions OK – request successful

Faulty scenarios Blockchain is empty due to node malfunction or gossip protocol failure

Example Request protobuf message:

{

}

Response protobuf message:

{

“confirmed_blocks_count”: 560,

“total_blocks_count”: 581,

“last_confirmed_block_hash”:
“1da0d7aeff8773579899fa48ab8bc6a72503240f684375c6123c197b2cb863ea”

}

4.6. Get transaction list

Endpoint Client

Method name GetTransactionList

Method description Retrieves most recent transaction list based on transaction limit and how many transactions to
skip (provides the ability to get transactions in batches)

Request parameters [addresses: bytes array]

List of all addresses by which transaction should be filtered (leave empty to apply no filter and
return all transactions)

[limit: uint64]

Maximum number of transactions to return in one batch (no more than 1000)

[skip: uint64]

Number of most recent transactions to skip starting from blockchain’s last confirmed block

Response parameters [transactions: GetTransactionResponse array]

List of all recent transactions filtered by addresses

Response code descriptions OK – request successful
INVALID_ARGUMENT – request parameter(s) invalid

Custom messages [GetTransactionResponse]

 - [transaction_hash: bytes]

Transaction hash

 - [block_hash: bytes]

Block hash of confirmed block where this transaction is found

 - [transaction_index: uint64]

Index of transaction inside a block

 - [sender_address: bytes]

The address that initiated this transaction

 - [receiver_address: bytes]

The address that received this transaction

 - [value: bytes]

Amount sent in the transaction

 - [gas: bytes]

Maximum gas (gas limit) to spend to send this transaction (gas used for transaction sending or
computational work in case of smart contracts)

 - [gas_price: bytes]

Amount of gas to pay for each unit of gas, greater gas price is related to faster time to execute
the transaction (transaction fee = gas * gas price)

 - [data: bytes]

Smart contract bytecode. Not in hex format, transform hex bytecode to bytes.

- [gas_used: bytes]

The gas amount used executing transaction

- [gas_refunded: bytes]

The amount that is refunded in special cases

- [new_address: bytes]

New address that is created after executing transaction (deployed contract address)

- [output: bytes]

The returned data of the call, e.g. a smart contract functions return value

- [excepted: bool]

true if an exception happened, false if transaction execution was successful

 - [confirmation_timestamp: uint64]

The time when the transaction was confirmed in UNIX timestamp format

[network_id: uint64]

Network id numbers differ depending on the environment. Mainnet is 1, testnet 2.

Faulty scenarios Blockchain is empty due to node malfunction or gossip protocol failure
The expected limit is more than 1000 transactions
Address to filter by is not in Tolar address format

Example Request protobuf message:

{

“addresses”: [54f9f02416d894487e7bbd9d74065f7996cbdbf52bab547642],

“limit”: 2,

“skip”: 0

}

Response protobuf message:

{

“transactions”: [{

“transaction_hash”: “
c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”

“block_hash”: “ ae78000220d4a1a6d2b3ca9b14174505d9e4b081e06e1a5f2e79052a2f6e26b8”,

“transaction_index”: 1,

“sender_address”: “54f9f02416d894487e7bbd9d74065f7996cbdbf52bab547642”,

“receiver_address": “54949f54114bc39675157e123830ae7a70da7adfa19c24c8db”,

"value": 156,

"gas": 21000,

"gas_price": 1,

"gas_used": 21730,

"gas_refunded": 0,

"data": "b3de648b0001",

"nonce": "1",

"new_address": "",

"output": "0009"

"excepted": false,

“confirmation_timestamp”: 1559653728,

"network_id": 1},

{

“transaction_hash”: “ f58ffec7eb33908a32aa4c0c1ec4b30abc2dd9f0dc4da390f46f6b56762fdf24”

“block_hash”: “ b1245sf2s0d4a1a6d2b3ca9b14174505d9e4b081e06e1a5f2e79052a2a6d2fbf”,

“transaction_index”: 2,

“sender_address”: “54949f54114bc39675157e123830ae7a70da7adfa19c24c8db”,

“receiver_address": “54f9f02416d894487e7bbd9d74065f7996cbdbf52bab547642”,

"value": 12360,

"gas": 21000,

"gas_price": 1,

"gas_used": 21730,

"gas_refunded": 0,

"data": "",

"nonce": "0",

"new_address": "",

"output": "",

"excepted": false,

“confirmation_timestamp”: 1559653739

"network_id": 1}

]}

4.7. Get nonce

Endpoint Client

Method name GetNonce

Method description Get next available nonce value for specific address

Request parameters [address: bytes]

Address in Tolar address format

Response parameters [nonce:bytes]

Nonce value

Response code descriptions OK – request successful
INVALID_ARGUMENT – request parameter invalid

Faulty scenarios Requesting nonce for invalid Tolar address

Example Request protobuf message:

{

“address”: “54f9f02416d894487e7bbd9d74065f7996cbdbf52bab547642”

}

Response protobuf message:

{

“nonce": 12

}

4.8. Get balance

Endpoint Client

Method name GetBalance

Method description Get balance for selected address on the specified block in the blockchain

Request parameters [address: bytes]

Address in Tolar address format

[block_index: uint64]

Block index

Response parameters [balance: bytes]

Balance for the selected address

[block_index: uint64]

Block index where balance check happened

Response code descriptions OK – request successful
INVALID_ARGUMENT – request parameter invalid

Faulty scenarios Requesting balance for non-existing address
Requesting balance on non-existing block index

Example Request protobuf message:

{

“address”: “54f9f02416d894487e7bbd9d74065f7996cbdbf52bab547642”

"block_index": 13

}

Response protobuf message:

{

“balance”: 45,

"block_index": 13

}

4.9. Get latest balance

Endpoint Client

Method name GetLatestBalance

Method description Get current balance for selected address on last valid block in blockchain

Request parameters [address: bytes]

Address in Tolar address format

Response parameters [balance: bytes]

Balance for the selected address

[block_index: uint64]

Block index where balance check happened

Response code descriptions OK – request successful
INVALID_ARGUMENT – request parameter invalid

Faulty scenarios Requesting balance for non-existing address

Example Request protobuf message:

{

“address”: “ 54f9f02416d894487e7bbd9d74065f7996cbdbf52bab547642”

}

Response protobuf message:

{

“balance”: 304,

"block_index": 130

}

4.10. Try call transaction [Thin node only]

Endpoint Client

Method name TryCallTransaction

Method description Executes read only contract functions on evm without spending gas or having any effect to address
balance and nonce.

Request parameters [object: Transaction object]

 Response parameters [output: bytes]

The returned data of the call, e.g. a smart contract functions return value

[excepted: bool]

true if exception happened, false if transaction execution was successful

Custom message parameters [Transaction]

[sender_address: bytes]

 Sender address in Tolar format

[receiver_address: bytes]

 Contract address in Tolar format

[value: bytes]

 Amount of tolars

[gas: bytes]

 Maximum gas (gas limit) that is available for call function

[gas_price: bytes]

 Amount of gas to pay for each unit of gas, greater gas price is related to faster time to execute
transaction (transaction fee = gas * gas price)

[data: bytes]

 Smart contract bytecode. Not in hex format, transform hex bytecode to bytes.

[nonce: bytes]

 Unique transaction index for this sender address (auto-incremented value, each transaction has unique
nonce)

[network_id: uint64]

Network id numbers differ depending on the environment. Mainnet is 1, testnet 2.

Response code descriptions OK – request successful
INVALID_ARGUMENT – something wrong with request parameter(s)

Faulty scenarios Not enough gas to execute contract function

Example Request protobuf message:

{

“sender_address”: “ 54948c78114bc39675157e097830ae63c0da7857a19c13aec7”,

“receiver_address”:” 54949f54114bc39675157e123830ae7a70da7adfa19c24c8db”,

“value”: 0,

"gas": 210000,

"gas_price": 1,

"data": "b3de648b0001",

"nonce": 0,

"network_id": 1

}

Response protobuf message:

{

“output”: “0007”

"excepted": false

}

4.11. Get transaction receipt [Thin node only]

Endpoint Client

Method name GetTransactionReceipt

Method description Retrieves confirmed transaction receipt information from the current node's blockchain

Request parameters [transaction_hash: bytes]

The hash for requested transaction receipt

Response
parameters

[excepted: bool]

false if transaction execution was successful, true if the EVM reverted the transaction

[block_hash: bytes]

Block hash of confirmed block where this transaction is found inside

[block_index: uint64]

Block index of the confirmed block where this transaction is found inside

[transaction_hash: bytes]

Transaction hash

[transaction_index: uint64]

Index of transaction inside a block

[sender_address: bytes]

The address that initiated this transaction

[receiver_address: bytes]

The address that received this transaction

[new_address: bytes]

The contract address created, it the transaction was a contract creation, ZERO_ADDRESS if no contract was created

[gas_used: bytes]

The gas amount used executing transaction

[logs: LogEntry array]

An array of log objects, which this transaction generated.

Custom message
parameters

[LogEntry]

[address: bytes]

 Address in Tolar format

[topics: bytes array]

 Index names/arguments used for indexable search

[data: string]

 Log data

Response code
descriptions

OK – request successful
NOT_FOUND – transaction receipt is not found

Faulty scenarios The transaction receipt doesn’t exist.

Example Request protobuf message:

{

“transaction_hash”: “ c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”

}

Response protobuf message:

{
 "block_hash": "260eaaaa69a4e60de749255f3cdc3334b517e0ee190318f60b009c56d94c6ca1",

 "block_index": "58",

 "transaction_hash": "c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470",

 "sender_address": "5412c347d6570bcdde3a89fca489f679b8b0ca22a5d4e3b6ca",

 "receiver_address": "5456a09d5c06e23ec6a71a7db606549ec4bde1788c71a9552b",

 "new_address": "540023199e2b",

 "gas_used": "639e",

 "logs": [
 {
 "address": "5456a09d5c06e23ec6a71a7db606549ec4bde1788c71a9552b",

 "topics": [
 "324591e46c0cd422e42a223fbdaf9117beefd35b5f20a2b908afff711bd55bee",

 "00000000000000000000000012c347d6570bcdde3a89fca489f679b8b0ca22a5",

 "0008"
],

 "data":
"0020000000000000000000000000000000

 0000000000000000000000000000000005657874726100
000000000000"
 }
]
}

4.12. Get gas estimate [Thin node only]

Endpoint Client

Method name GetGasEstimate

Method description Executes a transaction and returns the amount of the gas used for which transaction succeeds executing.

Request
parameters

[object: Transaction object]

Transaction object for which gas estimation should be returned.

Response
parameters

[gasEstimate: uint64]

Estimated gas in AttoTolars.

Custom message
parameters

[Transaction]

[sender_address: bytes]

 Sender address in Tolar format

[receiver_address: bytes]

 Contract address in Tolar format

[value: bytes]

 Amount of tolars

[gas: bytes]

 Maximum gas (gas limit) that is available for call function

[gas_price: bytes]

 Amount of gas to pay for each unit of gas, greater gas price is related to faster time to execute the transaction
(transaction fee = gas * gas price)

[data: bytes]

 Smart contract bytecode. Not in hex format, transform hex bytecode to bytes.

[nonce: bytes]

 Unique transaction index for this sender address (auto-incremented value, each transaction has unique nonce)

[network_id: uint64]

Network id numbers differ depending on the environment. Mainnet is 1, testnet 2.

Response code
descriptions

OK – request successful
INVALID_ARGUMENT - passed in arguments are not in correct format

Faulty scenarios Invalid addresses/data passed in.

Example Request protobuf message:

{

"sender_address": "5407f92b62a09720b2e7494d0508a05c1e0a5a7ab45f2d7d00",

 "receiver_address": "540023199e2b",

"data":"6060604052341561000f57600080fd5b5b6101818061001f6000396000f30060606040526000357c01000
000900463ffffffff1680634c970b2f1461003
e575b600080fd5b341561004957600080fd5b61005f6004808035906020019091905050610075565b60405
18082815260200191505060405180910390f35b60003373ff167f5ac470ca
37d22feedf5dd73f97b31372936ffd0646448d9954db56c2bda4f4a18360405180828152602001806020018
28103825260058152602001807f6578747261000
000008152506020019250505060405180910390a23373ff167f6383d46e4b
836c0e8a487da32d5b52fd66265dde60ec8f6d656bc41d524f735f836040518082815260200191505060405
180910390a28190505b9190505600a165627a7a723058205ef30a6ab95b6e2f6a4d6eb39b79203a1c893238
23a4c42349bd22f07cd6f6ce0029",

"value": "5678",

"nonce": "1234",

"gas_price": "1",

"gas": "21000",

"network_id": 1

}

Response protobuf message:

{

"gasEstimate": 74773

}

4.13. Get latest block

Endpoint Client

Method name GetLatestBlock

Method description Retrieves latest confirmed block from the blockchain

Request parameters None

Response parameters [block_index: uint64]

Block index in current blockchain

[block_hash: bytes]

Block hash

[previous_block_hash: bytes]

Block hash for the previous block in blockchain attached to this block

[transaction_hashes: bytes array]

An array of transaction hashes contained in this block

[confirmation_timestamp: uint64]

The time when the block was confirmed in UNIX timestamp format

Response code descriptions OK – request successful

Faulty scenarios Blockchain is empty due to node malfunction or gossip protocol failure

Example Request protobuf message:

{

}

Response protobuf message:

{

“block_index”: 42,

“block_hash”:

“c5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470”,

“previous_block_hash”:
“392c3138b6931a649b5b293ae2129ac0671b91905ebb39694fbe1c4f0ed9f28d”,

“transaction_hashes”: [“f58ffec7eb33908a32aa4c0c1ec4b30abc2dd9f0dc4da390f46f6b56762fdf24”,

“0e5669f90fdf46baef98b629efc1e7b461b4f092600a07a5449b963a3865483e”,

“23795ebb10fc32524e2280734087fe99fe8d5f28db360bbf635a6abe44c872da”],

“confirmation_timestamp”: 1559653728

}

4.14. Get past events

Endpoint Client

Method name GetPastEvents

Method description Retrieves contract last events based on address and topic

Request parameters [address: bytes]

Contract address

[topic: bytes]

Optional parameter. Contract log topic.

Response parameters [past_events: PastEvent array]

List of Past events for request parameters

Custom messages PastEvent message:

- [address: bytes]

Contract address

 - [topic: bytes]

Topic hash value

 - [: bytes]topic_arg_0

Topic argument 0 value

 - [: bytes]topic_arg_1

Topic argument 1 value

 - [: bytes]topic_arg_2

Topic argument 2 value

 - [data: bytes]

bytecode data

 - [: bytes]transaction_hash

Transaction hash

 - [block_hash: bytes]

Block hash

 - [block_index: uint64]

Block index

Response code
descriptions

OK – request successful

Faulty scenarios The contract address does not exist.

Example Request protobuf message:

{

“address”: “5484c512b1cf3d45e7506a772b7358375acc571b2930d27deb”,

“topic”:” 0d13800e76908f21833df64e9bc413caf783ec15c3453f1e5f7666187a326928”,

}

Response protobuf message:

{

[
{
"address": "5484c512b1cf3d45e7506a772b7358375acc571b2930d27deb",
"topic": "0d13800e76908f21833df64e9bc413caf783ec15c3453f1e5f7666187a326928",
"topic_arg_0": "00",
"topic_arg_1": "00",
"topic_arg_2": "00000000000000000000000034dcc69921b8bacf14017b4289820150a4a42aaa",
"data": "74686973206973206669727374206c617374206576656e74",
"transaction_hash": "3114c475957d5353ef70715336c5bf4c25e250287f2d79a34a1a4d03414643dd",
"block_hash": "0d928eeb95baa6ce0ad292b3dc0f0b050ae0429cc8da1af906658f1bc2072106",
"block_index": 12345
},
{
"address": "5484c512b1cf3d45e7506a772b7358375acc571b2930d27deb",
"topic": "0d13800e76908f21833df64e9bc413caf783ec15c3453f1e5f7666187a326928",
"topic_arg_0": "00",
"topic_arg_1": "00000000000000000000000034dcc69921b8bacf14017b4289820150a4a42aa6",
"data": "74686973206973207365636f6e64206c617374206576656e74",
"transaction_hash": "3114c475957d5353ef70715336c5bf4c25e250287f2d79a34a1a4d0341464333",
"block_hash": "0d928eeb95baa6ce0ad292b3dc0f0b050ae0429cc8da1af906658f1bc2072106",
"block_index": 12345
}
]

}

	Tolar gRPC client API documentation

